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Abstract. The three-band Emery model is reduced to a single-particle quantum model of Falicov-Kimball
type, by allowing only up-spins to hop, and forbidding double occupation by projection. It is used to study
the effects of geometric obstruction on mobile fermions in thermodynamic equilibrium. For low hopping
overlap, there appears a plateau in the entropy, due to charge correlations, and related to real-space
disorder. For large overlap, the equilibrium thermopower susceptibility remains anomalous, with a sign
opposite to the one predicted from the single-particle density of states. The heat capacity and non-Fermi
liquid response are discussed in the context of similar results in the literature. All results are obtained by
evaluation of an effective single-particle free-energy operator in closed form. The method to obtain this

operator is described in detail.

PACS. 71.27.4a Strongly correlated electron systems; heavy fermions — 71.30.+h Metal-insulator
transitions and other electronic transitions — 72.15.Jf Thermoelectric and thermomagnetic effects

1 Introduction

There is at present no paradigmatic ‘non-Fermi liquid’ in
more than one dimension, in the same sense as there is the
Luttinger liquid in the 1D case. It is therefore of continu-
ous interest to study failures of the Fermi liquid concept
in special cases, accessible to concrete calculation. The
behavior of electrons in the presence of localized obstruc-
tions has long been a fertile ground for investigating de-
viations from simple Fermi liquid behavior. Examples are
the quantum Hall effect [1], the Kondo problem [2], local-
ization by impurities [3], and the Mott metal-to-insulator
transition [4]. All of these save the last involve fixed im-
purity distributions, and their unusual behavior is related
to the creation of localized states in the presence of scat-
terers. Because of this, states accessible to weak probes
cannot be understood in the picture of nearly indepen-
dent quasiparticles.

The Mott transition is unique among the above be-
cause the localized obstructions are the mobile electrons
themselves, due to the strong on-site repulsion between
electrons of the opposite spin. This means translational
invariance is not broken, and obstruction is dynamical,
which makes the problem much more difficult than with
quenched disorder. Despite many contributions which
have shaped our present understanding [5-12], no picture
of the Mott transition has emerged to date, which con-
vincingly describes the phenomenon in space and time.
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Motivated by the Mott problem in the charge-transfer
limit, which is of primary interest for high-temperature su-
perconductors [13], the present work describes non-Fermi
liquid behavior in one model of the Falicov-Kimball [14]
group, which are intermediate between the quenched-
disorder case and the fully dynamical Mott case: the dis-
order is heavy, but annealed. In this way translational in-
variance is restored at the level of the ensemble, while
the dynamics still relates to static disorder. The present
model is the only one in the group in which the disorder
is truly geometric, i.e. quantum processes do not physi-
cally interact with any classical degree of freedom. This
makes it an interesting test-bed for non-Fermi liquid be-
havior, and indeed it is found that geometric obstruction
induces collective behavior in the ‘strange metal’ state be-
yond half-filling. It somewhat resembles normal 3He at
0.5 K, where the entropy saturates at In2 per atom [15],
simply because the atoms push against each other, ob-
structing kinetic motion. In the limit of low hopping over-
lap, the model develops an unexpected similarity to the
Kauzmann paradox [16] in vitreous liquids, despite the
fact that all calculations are at equilibrium, so one cannot
speak of kinetic slow-down in the usual sense.

For intermediate-to-large overlaps, the model appears
at first sight as a renormalized Fermi liquid. However, the
‘equilibrium thermopower,” 9u /9T, behaves exactly oppo-
sitely to what is predicted from the effective one-particle
density of states (1p-DOS) at the same temperature and
filling. This persistence of quantum collectivity is observed
because geometric obstructions take the form of boundary
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conditions, so they cannot be suppressed by hopping fluc-
tuations.

The technique used to analyze the equilibrium prop-
erties of the model is presented here for the first time. It
enables one to find a closed analytical expression for the
free energy. The essential idea is to remain in the Fock
space of the mobile fermions, while evaluating the loga-
rithm of the annealed partition function. The one-particle
part of this logarithm is then itself a one-particle opera-
tor in Fock space, and can be diagonalized exactly, just
like any tight-binding Hamiltonian. With such a careful
treatment of Pauli correlations, it is sufficient to expand
the annealed free energy to the first non-trivial term in a
Kubo cluster cumulant expansion [17]. The resulting an-
alytical expression is exactly correct in both the atomic
and metallic limits, and qualitatively compares well with
numerical calculations on similar models.

2 The model
2.1 Brief description

The geometric Falicov-Kimball model used here has been
introduced previously [18]. It is given by the follow-
ing modification of the well-known Emery (three-band)
model [19]:

H=¢eq) fic+ep Y (i + Nyic)
+ty (1—7q) (d;Pn + Pl
i

).
where P, = Pi—ss20 T Picyree — Pivijs2e — Pitg2o
describes the four oxygen p-orbitals around a copper d-
orbital, and 7y, Nz i, Ny,ic are the number operators of
the copper and oxygen sites. Notice that only up-spins
can hop. This is a simple realization of the idea behind
Gutzwiller’s approximation: fermions of one spin orien-
tation see those of the other ‘as if occupying a band of
width zero’ [6]. The static down-spins are scattered at ran-
dom. If one lands on an oxygen site, it pays the price of
a charge-transfer energy A,q = ¢, — €4 > 0 between oxy-
gen and copper, but is otherwise inactive. Thus the mobile
up-spins see a lattice with defects, different for each ar-
rangement of down-spins. The situation is summarized in
Figure 1. (For those familiar with the Emery model, note
that the up- and down-spins here correspond to physical
holes in the copper d-orbitals, not electrons.)

In this variant of the Falicov-Kimball [14] model, there
is no physical scattering off the heavy classical spins. In-
stead the mobile spins see a ‘torn’ lattice with open bound-
ary conditions where the hopping has been turned off.
Thus they are in the strong-coupling limit on the one
hand, and there is no singularity in their Hamiltonian,
on the other. Now there intervenes a significant topolog-
ical simplification, namely the ‘crosses’ of hopping over-
laps impinging on copper sites tile the plane, as visible in
Figure 1. This gives the model its name, random-tiling
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Fig. 1. The random-tiling model. Black lines are hopping inte-
grals for up-spins, connecting copper (black) and oxygen sites
(white). The hopping integrals are turned off where there is a
down-spin on a copper site.

(RT) model, and makes it possible to express the an-
nealed free energy of the problem by a Kubo cluster-
cumulant expansion without leaving the Fock space of
up-spins [18,20]. Double occupation of copper sites is dis-
allowed by a separate factor exp(—fU Y, ni17;)) in the
partition function, with U > Ap4. This factor is not en-
tangled with the Hamiltonian, so it is not an interaction,
but pure bookkeeping, to force all the mobile spins away
from the ‘torn’ part of the lattice. The projector (1 — 7))
in equation (1) is treated exactly, which is essential [21]:
both the Pauli principle and the geometric obstruction
are treated on an equal footing. One projects the Fock-
space Kubo expansion onto the single-particle subspace,
and keeps the first non-trivial term, while higher single-
particle terms can be shown to be negligible. This gives
a one-particle quantum free-energy operator, whose spec-
trum can be exactly obtained in closed form. It is built
from up-spin wave functions which anneal the geometric
disorder. It provides the effective background for all resid-
ual (two-particle) interactions, so it is of interest to study
by itself. The Mott-Hubbard transition has already been
studied in some detail [22].

2.2 Detailed derivation

The present section is purely technical, and quite inde-
pendent of the rest of the article. It describes how the
annealed free energy of the random-tiling model can be
written without leaving the Fock space of up-spins. The
one-particle part of this expression takes the form of a
rapidly convergent cluster cumulant expansion around the
atomic limit. The main strength of the procedure is that
it never violates either the geometric or the Pauli con-
straints. In particular, it is shown that the same closed
expression exactly recovers the metallic free-fermion limit
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for the up-spins, when the down-spin concentration goes
to zero. This is the opposite limit from the atomic one,
which attests to the advantage of working in Fock space.
Such physical considerations are collected in the last part
of this section, to which one may prefer to skip at first
reading.

2.2.1 Problem and method

The physical picture described above corresponds at
equilibrium to the evaluation of the canonical partition
function

(2)

where H is the Hamiltonian (1), under the geometric con-
straint, that mobile up-spins do not land on the copper
sites occupied by the down-spins, to which the hopping
has been turned off by the projector in (1). As already
mentioned above, this is implemented by actually evalu-
ating the unconstrained trace of

Z =tre PH

—_BH —B8V —pBV, —BH —pBV,
Z=tre Pl B :treﬁ/Qeﬁeﬁ/Q,

(3)

where the disentangled term e~#" enforces the constraint,
with
V=U . (4)
i

(The form with V/2 turns out to be more convenient for
later manipulation.) It puts the mobile up-spins onto that
part of the lattice which is not ‘torn’ by the down-spins
on copper sites, acting through the projector 1 — 7; in
equation (1). One can easily put U — oo in the final ex-
pressions, but it is neater to keep a finite U > A,q. As
expected, the results are numerically independent of U in
this limit.

The trace over down-spins in equation (3) is trivial to
perform, and results in rather laborious expressions of the
generic form

>

{il,iQ,...,’i]\4}C£

f(An +~-~+AiM)EULIVI~ (5)

Here A; are site-labelled operators in the Fock space of
up-spins, essentially the crosses in Figure 1. This is obvi-
ous, since a given configuration of down-spins corresponds
to some choice of M lattice sites where the hopping sur-
vives, out of a total L sites (L is volume) comprising the
lattice £. Note that f is a function of Fock-space operators
for the up-spins. It is something like
F(X) ~ exp[~B(Ho + X)), (6)
where Hj is the site Hamiltonian. The Up,s are the
thermal evolution operators for the annealed disorder
with M hopping crosses present. The main point of the
method used here is to reorganize expressions like (5)
by a combinatorial inversion which is valid for arbitrary
non-commuting operators. This allows one to extract the
one-particle part of the free energy expansion exactly, and
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show that corrections to its first (one-site) term are con-
trolled in the range of fillings of interest here.

Physically, the method boils down to a combinatorial
interpretation of Kubo’s cluster cumulant formula for the
free energy. This is explained at length in reference [20],
where these ideas are used to cover familiar ground. In par-
ticular, the reader is reminded that the expansion param-
eter, corresponding to the concentration in the classical
virial expansion, is an occupation probability in the gen-
eral case [17]. In the present work, one implements Kubo’s
formalism by first performing the combinatorial inversion
at the level of the stochastic evolution operators (5), and
taking the logarithms only in the last step. To be explicit,
introduce the binomial transform

Urm = Z (é_i)) UL(p), (7a)
B \p—M L-M
UL(p) = %:( 1) <p _ M>ULM- (7b)

When one of these expressions is inserted into the other,
the result is an identity, so they are valid independently of
what the Ur s may be. Then a very short exercise shows
that the generating function for the Upjps’s may be ex-
pressed in terms of the Ur(p) as

Z:L’MULIVI = (1+93)LZZIPUL(Z7)7 (8)
% p

where y = 2/(1 + z), 0 < y < 1. This result depends
only on the relation (7a), and in particular, nothing is as-
sumed about commutativity. Since the Uy s are canonical
evolution operators, the sum in (8) is the corresponding
grand canonical operator. Hence z involves the chemical
potential for the hopping crosses, z = exp(fr'), say. In
the present context, it will be more convenient to express
the expansion parameter y in terms of the chemical poten-
tial of the static down-spins, call it v. Since the hopping
cross is absent when the down spin is present on a copper
site, the two chemical potentials are effectively connected
by a particle-hole transformation. When the energy origin
is conveniently chosen so that ¢4 = 0, this amounts to
v=-v1le.
1

Y= epr

9)
For the range of concentrations considered in this article,
half-filling and beyond, the chemical potential of the static
down-spins will turn out to be at the oxygen energy, v =
gp > 0, so that y is exponentially small. Thus it provides
rapid convergence in the expansion of the one-particle part
of equation (3) for these concentrations.

2.2.2 Main expressions

Set the bare copper energy 4 = 0. In Emery-model jar-
gon, the ‘hole picture’ is assumed, so €, > ¢4 = 0, and as



322

mentioned above, U > ¢,,. Call

L
Nay = Z ni
i=1

the number operator on the copper sites, which appears
in (1). The actual forms encountered in tracing (3) are
slightly more complicated than suggested in the previous
section, because of the side factors with V/2, and because
the down spins can also land on the oxygen sites. Overcom-
ing these complications by ordinary diligence, the Uy, (p),
required in (8), are given by

(10)

7ﬁ(8pj\\]pT+Uj\\]dT)’

Ur(0) = (11)

=€

L ~

Z( —B(U/2)(Nar—ni1) g=BlenNpr +t(df; Py + Py, )]
i=1

% e—BWU/2)(Nar—nir) _ UL(O)), (12)
Here, NpT is the number operator on the oxygen sites.
Stopping at first order in y in the general expansion (8),
the operator to be traced over the up-spins now appears as

Z qL e~ Ben(N =M))
Ny — M,
M,

< [l ) e { I (U200) +yUL ()],
(13)

)

where the notation ‘[[z"]]..." means ‘coefficient of z”
in ..., and ‘1p’ means ‘one-particle part.” Here N| is the
total number of static down-spins, and M| is the num-
ber of down-spins which have landed on the coppers. The
number of oxygen sites per unit cell is ¢ = 2. In the next
section, the logarithm of equation (13) will be explicitly
computed in Fock space. Assume for now that this has
been done, and that the one-particle operator in braces
in (13) has been diagonalized. Then the trace can also be
performed in the space of up-spins. Introducing a chemical
potential u for these latter, the trace now reads

Z qL o—Ben(N — Ml)(lJre PEZ(p,v)
Ny — M,
M,

eBuNT g—BV(L—M}) ’
where  has been called e=#", v is the chemical potential
of the down-spins, and

Z(pv) =] (1 i eﬁ(u—em,u»)

k,«x

(14)

(15)

is the grand partition function in up-spin space, with
eq(k, V) the energies of the up-spin normal modes, indexed
with a band index «, and depending on the chemical po-
tential of the down-spins, v, as well as on a wave vec-
tor, k. Finally, the sum in (14) is evaluated by taking its
largest term, resulting in the following model: find the

extremum of
(1+ e#)(1 + P01 §/Z(1,0)

eﬁ/‘nT eﬁynl

Eff(ua V) = ) (16)
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in the space of ;1 and v, for given concentrations ny and n|.
The extremal equations are

_ 10z v)

np = T (17a)

efv

i efv—sp) 190InZ(p,v)
1+ ePv '

N ep—e) "7 Bov

n, = (17b)

Equation (17b) is physically transparent: there are static
down-spins, sitting in one level at €4 = 0, and ¢ = 2 lev-
els at the oxygen energy €,. The last term, affecting the
count of down-spins, comes from the interaction with the
up-spins, as coded by the dependence of their dispersion
on v. This dispersion is derived in the next section, giving
a complete, closed model. Its dependence on the chemical
potential of the down-spins is expected on general thermo-
dynamic grounds, since the presence of down-spins affects
the configurations available to up-spins.

2.2.3 Extraction of the one-particle part

In the previous section, the binomial transform was used
to treat the stochastic evolution operator induced by the
geometric constraint (annealment). The manipulations
were mostly an exercise in bookkeeping. In this section,
the Pauli constraint is considered, and the main tool is
the evaluation of analytic functions of matrix arguments.
This is the straightforward way to evaluate analytic func-
tions of Fock space operators, if one is only interested in
the resulting one-particle part. Analytic functions of ma-
trix arguments are evaluated as usual, by diagonalization:
F(A)=F(SST'ASS™) = SF(S7TAS)S™ .
To prepare the ground requires, however, one last com-
binatorial trick. Namely, take the f(X) in (5) to be
In(Ur(0) + yX). Then In(Ur(0) + yUL(1)) can play the
role of an ‘Ury’ in (5), since Ur(1) in (12) is a sum over
all site-indexed terms, each playing the role of an ‘A;’
in (5). The expansion (7a) with M = L then gives, for
this case,

(oo enn) -

+ Z {In [U2(0)

B(epNpt + UNay)

+yB;] —In[UL(0

}+Z

i<j

where the sum over i < j is already a second-order term.
Here B; denotes the ith term under the sum in (12). The
effective free energy is then

L
o~ ~ 1
Fog = €, Npt + UNgy — 3 E { iy (19)
i=1

where the braces refer to the same expression as in equa-
tion (18). Higher order terms are dropped, because they
correspond to higher powers in y.
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From now on the way is clear, provided one has an alge-
braic manipulation program. The effective free energy (19)
may be rewritten

1p

Fur = 3" (14 V] [Ty + y(Us - Uo)) Vi)
fV;Tdiag(sp/Q,ep/Z,0,51,/2,51,/2)‘/;, (20)

where Vi = col(p;_z 5 12 Piyg0.10 dit> Picg o1 Pigaya,y) 19
the column of Fock-space operators, referring to atoms
centered on the ¢th site, with d,, the copper operator.
Explicitly, Uy = diag(e P> —1,e7Pe» —1,e PV —1, e Per —
1,ePe» — 1), and

T9 —T2 T1 Tg —T2
—T2 T2 —T1 —T2 T2
U —Uy = T —T1 To T1 —T1 |, (21)
T9 —To2 T1 Tg —T2
—T2 T2 —T1 —T2 T2
with
2 ¥ P . o®
= T+ Bgin? L - 22
To = W COS 2+wsm 5 G (22a)
411 = —wsinp + L in ©, (22b)
w
47y = wsin® g + gcos2 g —p, (22¢)
where the following shorthand has been used:
w:eﬁﬁpd, p=e P c=e P, (23a)
and
2t
sinp = —— (23b)
V&)
2
cosp = %, (23c¢)
V@7
while the exponent in w is
~ 2
Apg = (%p) +a- 2, (23d)

Coming back to Feg, the one-particle part of the log-
arithm may be written explicitly, giving

L
Fug =) ViTV,

(24a)
i=1
where
€
?p Flpp —tpp tpd tpp —tpp
£
—lpp ?p tlpp —tpa  —tpp tpp
T = tpd —tpd Aey tpd —1pd
I
tpp ~tpp  tpd 71, tipp —tpp
£
—lpp tpp —tpd  —lpp ?p +lpp
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Before the expressions for the matrix elements of T are
given, note that (24) is like a simple tight-binding Hamil-
tonian, which may be diagonalized by a Fourier transform.
The spectrum consists of three bands, one of which is non-
bonding:

ep + Aegq

€+ (7]3) = + 2tpp7]3
&, — Aey 2
+ (pT + 27:,,,,%3) + 4t§d%§, (25a)
€0 = Ep, (25b)
with 72 = sin®k, /2 + sin® k, /2. The dispersion (25) is

the effective spectrum of up-spins in the presence of static
down-spins. It was denoted, schematically, as e,(k,v) in
the definition (15) of Z(u,v).

In order to specify the model (16) in full, it only re-
mains to write down the matrix elements of 7' in (24).
Define (+ by

e P = p_—2|—c +y (272 + %)

2
+ \/{%ﬂ/(%%)] +dy2r2, (26)

where y = 1/(1 + €7¥), and the rest of the notation is as
in (22, 23), while v is, as always, the chemical potential of
the static down-spins. Then

tpd = % sin 1, (27a)
Aty = Gt ;g_ s ;g_ cosy — &, (27b)
Agg = Cre-  Gr 6 cos 1, (27¢)
2 2
where
siny = 2y = ,
Vi v = 30"
b—c 27 — 10
wu— [ty (er - 3]

Vi v e - 30"

This completes the derivation of the effective spec-
trum (25) of the model (16).

2.2.4 Physical considerations

Let us first summarize the physical truncations made in
the preceding derivation. Two distinct meanings of ‘first
non-trivial term’ were employed. One is to keep to the
one-particle part of the Fock space. This is guaranteed
by the Fock-space formalism itself, or more technically by
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the fact that one has passed from operators to numbers
only in the last step of the calculation, when diagonalizing
the operator (24). The other is to keep to first order in
the expansion in y. This is a little more tricky, because
the final spectrum (25) of the free energy is non-linear
in y. Here ‘first-order’ actually means first-order at the
level of the evolution operator. This is especially evident
in the forms (19) and (20). Operationally, the rule is to
keep to first order in y under the logarithm, but the one-
particle part of the resulting logarithmic operator must be
extracted exactly, i.e. without further truncation in y.
The above one-particle effective free energy is formally
the first (one-site) non-trivial term in an expansion around
the atomic limit. In terms of the expansion parameter
y = 1/(1 + €P"), where v is the chemical potential of the
down-spins, this is an expansion around y = 0, when the
copper sites are completely occupied by down-spins. It
will now be shown that the result is correct also for y = 1,
which means no down-spins at all (v — —o0). Then the
exact non-interacting band is recovered. This is a very use-
ful check that the two truncation prescriptions discussed
in the previous paragraph are mutually consistent. In par-
ticular, it shows that keeping to first order in y does not
violate the Pauli principle. This is a benefit of working in
Fock space — in similar expansions around the classical
limit, the Pauli correlations are only taken into account in
an inclusion-exclusion procedure [23], which remains ap-
proximate to all finite orders in the expansion parameter.
Taking v — —oo in equation (26), one gets

e P s w, e s plu,
cos — —cosp, siny — —singp. (28)
Putting all this together, the hopping amplitudes (27)
become

tpa — t, tpp — 0, Aeq — 0,

which gives the dispersion for the free limit of the Hamil-
tonian (1). This confirms that the one-particle part of the
original problem has been treated correctly. It is also easy
to verify that putting y = 0 gives the same result as t = 0
in the original Hamiltonian, but this is of course expected.

It will now be shown that the one-particle part of
the expansion in y is controlled, for the concentrations
considered in this article. The higher order terms in y
contain one-particle contributions coming from the diag-
onalization of larger ‘molecules,” such as CuyO7 (say),
which appears when two ‘hopping crosses’ share an oxy-
gen. This has the typical structure of a connected-cluster
expansion. The general term is y?UL(p). For down-spin
concentrations beyond half-filling, the saddle-point equa-
tions give v ~ ¢, i.e. y ~ e P = e A (remem-
ber we put £4 = 0). Note from equations (20) and (23)
that the magnitude of the term multiplying y is roughly
w = etPAd 50 the overall estimate for the first term is
yUL(1) ~ yw ~ e~ P(Ara=4pa) < 1. Physically, A~pd is just
the hybridization energy associated with the diagonaliza-
tion of a single CuO4 ‘molecule.” A larger cluster will have
a larger hybridization gain, but it will also be suppressed
by a larger power of y. Since hybridization gains quickly
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saturate as a function of cluster size, they cannot offset the
addition of a whole bare A,4 with each new Cu site added
to a ‘molecule.” Hence the expansion is rapidly convergent
in the range of fillings considered below.

For down-spin fillings below the Mott transition, i.e.
corresponding to the lower Hubbard band (LHB), v =
eq = 0, meaning y is some appreciable fraction of unity,
not exponentially small. Then presumably higher-order
single-particle terms could play a role. This is consistent
with the fact that in the LHB, there is a significant contri-
bution of the interaction to the entropy, while the same is
exponentially small beyond the Mott transition — the sys-
tem goes from liquid to gas, absorbing latent heat [18,22].
Nevertheless, the fact that the exact band result is recov-
ered in the limit y = 1 suggests that the present calcula-
tion should not be qualitatively incorrect even in the LHB,
not of main interest here.

3 Results
3.1 Small hopping overlap

In the model, the entropy of mobile spins is formally given
by the usual single-particle expression

Si== [ [ nlfu(e-)
BZ
0= e ) = )], (29

where p is the chemical potential of the mobile spins, while
the effective bonding band €_, given by equation (25), is
a function of v, the chemical potential of the static spins,
and of the temperature. Both p and v change with tem-
perature, since the particle number is fixed for the up- and
down-spins separately. In Figure 2, the entropy of mobile
spins is shown as a function of temperature, for two val-
ues of the bare hopping and several concentrations. The
most striking feature of the figure are broad plateaus, or
inflections, indicating dips of width ~ 100 K in the heat
capacity cy of the system. The curve at n = 1.8 even
shows a ‘Kauzmann paradox’ [16], where extrapolation
of the high-energy part would give a negative entropy at
zero temperature. Of course, the entropy is strictly zero
at T' = 0, since the free energy (16) is microscopic by con-
struction. The plateaus correspond to regions of low cy,
associated with the difficulty of finding new states, which
gives peaks in ¢y (see Fig. 6 below) between T' = 0 and
the plateau positions.

The plateaus are identified with static disorder in the
obstructed copper sites. The proof is as follows: call the
concentration of up-spins on the coppers my. If they were
static, their contribution to the entropy would be just

Stcu = —mpIn(my) — (1 —mq)In(l —ms),  (30)
and beyond half-filling, each copper site would be singly
occupied, either by an up-spin or a down-spin. Thus
m¢ = 1 —my, in the static case, where m| is the concen-
tration of down-spins on the coppers. Since m| is easily
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Fig. 2. Entropy of mobile spins (29), for ¢ = 0.25 eV (left three
curves), and t = 0.5 eV (right four curves). Curves are marked
by the corresponding concentration. Saturation plateaus are
clearly visible. Here Apq = 3 eV, U = 10 eV, and n = 2n; =
2nl.
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Fig. 3. Comparison of S;(7T) (thick line) and Sy,cu(T), equa-
tion (30) (thin line), for ¢ = 0.31 eV, n = 1.2, and other pa-
rameters as in Figure 2.

obtained from the calculation, one can use it to construct
St cu(T) from equation (30), and compare these values
with the actual S;(T) from the same calculation, given
by equation (29). As shown in Figure 3, the hypothetical
static entropy (30) coincides with the calculated entropy
at the inflection point, beyond which the latter begins to
rise. To show this more clearly, the hopping overlap is
slightly increased in this figure, so the plateau is not quite
flat.

This means that in the regime ¢ < A,q, excitation of
the system proceeds in two steps. First the copper posi-
tional degrees of freedom are fully saturated: their entropy
cannot be greater than that of the corresponding static
disorder. Then the translational ones, involving the oxy-
gens, are activated, but only after a small (~ 100 K) region
is crossed, where there are no new states. The two steps

100 200 300 400 500
TI[K]

Fig. 4. Chemical potential of mobile spins (thick line) cor-
responding to S;(T") in Figure 3. The bottom and top of the
effective band are given by thin and dashed lines, respectively.

are better separated when the bare hopping is smaller:
note the difference between the curves for ¢t = 0.25 eV
and ¢t = 0.5 eV in Figure 2.

Figure 4 shows how the model technically achieves this
behavior. As usual with single-particle effective models,
collectivity enters through the solution of the saddle-point
equations, which fix the chemical potential at a given
concentration and temperature. The chemical potential
traverses the band fairly rapidly as the temperature in-
creases, and leaves it roughly around the temperature at
which the plateau appears. As it passes through the re-
gion where the 1p-DOS drops, there appears a lack of new
states for the system. Once in the (Maxwellian) tail of
the Fermi distribution, the oxygen degrees of freedom are
further excited. In this sense, the system is again analo-
gous to 3He. However, there is no regime of classical ki-
netic motion in the model, since the bands are built-in by
assumption.

3.2 Large hopping overlap

Collective effects persist in the model even when the hop-
ping overlap becomes so large that the effective band ap-
pears to be normally metallic, with a well-defined Fermi
surface. They are no longer immediately evident at the
level of the entropy, but remain in the susceptibility. This
is shown in Figure 5. For comparison, the lower row shows
the limit of free fermions. The entropy for ny = n| = 0.6
(upper left panel) rapidly begins to look ‘normal’ as the
hopping overlap increases (thicker curves).

The right column in the figure shows that this im-
pression is misleading, however. It gives the equilibrium
susceptibility, corresponding to the thermopower,

1
Lo

ST (31)
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Fig. 5. Left column: entropy of mobile spins (29). Right col-

umn: equilibrium thermopower (31). Upper row: ny = n| =
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ping t = 0.25,0.5,0.75,1.0 eV, respectively, with Apq =3 eV.

In a simple rigid band, S., should change sign from pos-
itive to negative as the filling goes beyond one-half. This
is because the chemical potential goes down with the
temperature, if the 1p-DOS goes up with the filling, and
vice versa.

For the free model (lower right panel), the equilib-
rium thermopower (31) is indeed negative. Now add down-
spins until the model undergoes its Mott-Hubbard transi-
tion [22]. Then the up-spin S, (31) becomes positive, even
though the Fermi surface does not change with respect to
the free situation. It is physically clear what is happen-
ing: the kinetic blocking effects are strongest around half-
filling, so going beyond it increases the available degrees of
freedom, since the mobile up-spins on the oxygens are not
blocked. A similar outcome is expected from the effect
of antiferromagnetic (AF) correlations above the transi-
tion, however there it would be traced to the appearance
of a dip in the single-particle spectrum. Namely, such a
1p-DOS has a minimum around half-filling, so that be-
yond it, it rises again, just like at the bottom of the band.
Thus in the spin channel, an anomalous susceptibility is
due to a normal Fermi-liquid response. By contrast, in
the charge channel and beyond the Mott-Hubbard tran-
sition, the response cannot similarly be inferred from the
single-particle spectrum. Even though the model (16) is
formally single-particle and in the metallic regime, it is
not a normal Fermi liquid.

3.3 Heat capacity

The heat capacities of the random-tiling model are shown
in Figure 6 (thinner lines are always closer to half-filling).
In the LHB (left column), there is a transfer of spectral in-
tensity with doping, between a low- and high-energy scale,
both of which already exist at half filling. The latter is still
significantly lower than the bare charge-transfer scale Ayq,
which takes the role of U in the present context. This is

The European Physical Journal B

0.3

0.2

0.1

c, [kg/site]

0.0

0.3

0.2

c, [kg/site]

0.1

Th Th

Fig. 6. Heat capacities of the random-tiling model. Left
(right) column: below (above) half-filling. Thin to thick: left,
n = 2n; = 2n; = 0.9,0.7,0.5,0.3,0.1, right, n = 2ny =
2n; =1.0,1.2,1.4,1.6, 1.8, respectively. Upper row: ¢t = 0.5 eV,
Apg = 3 eV. Lower row: t = 1 eV, Apg = 3 eV. Verti-
cal dashed line: renormalized charge-transfer scale jpd, equa-
tion (23d). Insets: upper, detail of the narrow peak; lower,
n=14,t=2eV, Ay,g = 3 eV. Black triangles on the axes:
W/t, equation (34).

an effect of hybridization, as mentioned above: the larger
the hopping overlap, the lower this ‘high’ scale becomes
(note that the horizontal axes in the two rows are differ-
ent). Below the Mott-Hubbard transition, the equilibrium
thermopower is of the same sign as in the free case n|] — 0
(Fig. ), even for 2n; = 2n; = 0.9.

Concentrations beyond half-filling cannot be studied in
a one-band model. In the present three-band setting, there
appears another low-energy peak between the two peaks
present at half-filling, which quickly draws strength from
the high-energy peak as the doping increases. The new
low-energy scale induced by doping is specific to the three-
band model in the ‘in-gap’ concentration range. All the
relevant scales can be extracted analytically in the limit
T — 0, since in that limit the chemical potential of the
down spins is forced to one of two known values: v — ¢4 =
0 in the lower Hubbard band (LGB), and v — ¢, in the
in-gap band (IGB), beyond the Mott-Hubbard transition.
The expressions (27) are easy to evaluate in these limits.
Below the transition, the width of the lower Hubbard band
is practically unchanged from the non-interacting value

A\ A
Wy = (T”d) +8t2—Tpd (LHB),  (32)

where Apq = €, — €4. Here the only effect of strong corre-

lations on the band is a small but finite shift of the copper
level downwards,

Jim Acy = Apasin? % — Apg cos? % <0 (LHB). (33)

The IGB is, on the other hand, strongly affected by corre-
lations. The copper level is shifted upwards, and the band



D.K. Sunko: Fermion kinetics in the Falicov-Kimball limit of the three-band Emery model

T/w0

c, [ky/site]

0.0
0.2

0.2

c, [ky/site]

0.1ff

0 NETEET BRI B

327

T/(Apd+IA£dI+W0/2)

0 0.2 0.4

0.4

0.3

0.2

0.1

0.2

0.1

i
] ]

0O 0.5 1 1.5

T/w

0

0.5 1

1 P
04 06 08
T/,

15 0 0.2
TA

Fig. 7. Scales of the peaks in heat capacities for ¢ = 1 eV. Top (bottom) row: n = 0.9 (n = 1.1). Lines, thin to thick:
Apa =2,3,4,5,6,7,8 €V, respectively. The drawing in the middle of the top row schematically shows the scales as barred thick
lines, left for the lower Hubbard band (LHB), right for the in-gap band (IGB). The band edges are given by thin horizontal

lines, and the occupied levels indicated by shaded squares.

is significantly narrowed. Its width in the zero tempera-
ture limit is [22]

A
lim W=—"—"" ___ (IGB). (34)
=0 1+ Apa/(24pa)
The copper level shift is now large and positive:
%imo Acqg = Apg — A~pd cos? g >0 (IGB). (35)

Instead of using this formula, it is much more convenient
to note that the distance from the bare oxygen position
ep to the middle of the IGB is just Apq in the same limit,
i.e. the upper edge of the IGB is given by any of the two
formulas

. . ~ w
%11110 (eq+ Aeq) = %{»no (Ep — Apg + 7) (IGB). (36)

The relevance of these scales for the various peaks is
analyzed in Figure 7. Both below and above the Mott-
Hubbard transition, the lowest-energy peak is due to in-
traband transitions. The peak scales perfectly with W for
the IGB, and with Wy for the LHB. The high peak in the
LHB is due to interband processes, namely excitations into
the empty, non-dispersive non-bonding band at ,, which
is a distance Apq + |Aeq| + Wo/2 from the Fermi level
when the occupied band is nearly half-filled from below.
The middle (new) peak in the IGB is also due to inter-
band transitions. As noted above, the middle of this band
is a distance A,q from the oxygen level, giving the scale of
the middle peak when the band is nearly half-filled from
above.

Finally, the upper (third) peak in the IGB is again
due to interband transitions, but of a different kind. They
are governed by the bare scale A,q, which plays the role
analogous to U. However, there is no effective band in the
model at £4 beyond the Mott-Hubbard transition (the po-
sition 4 is denoted by a broken line for this reason). The
high peak is probing the ‘undressing’ scale, at which the
system effectively reverts to the atomic limit. Note that
the two thinnest lines, corresponding to A,q/t = 2 and 3,
respectively, do not scale so well by A,q in the right col-
umn, and simultaneously have not yet developed a third
peak in the middle column. The separation of scales be-
tween the middle and high peak should be regarded as a
sign of a well-developed charge-transfer regime Ayq > ¢
and n > 1, while for A,q ~ ¢, and n ~ 1 from above,
the two scales are mixed by local hopping fluctuations.
The upper peak for these two thin lines has a higher scale
than A,q, because the copper level they see is still ef-
fectively shifted by hopping correlations at the level of a
single CuQ4 ‘molecule’.

The same two IGB regimes, hopping-fluctuation and
charge-transfer, may be discerned in the upper and lower
panels in the right column of Figure 6, drawn to absolute
scale t. In the upper right panel, the input ¢/A,q < 1,
and the middle (new) peak is higher than W and lower
than Apq. Then A,q appears as a crossover scale between
the high-energy peak and the two lower-energy ones. This
is the charge-transfer regime, mentioned above.

The hopping-fluctuation regime prevails when the new
peak is at low energy with respect to both W and A,qg.
The lower right panel in Figure 6 shows the case Apq =1,
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Fig. 8. Left: numerical results with the Lanczos algorithm [24]. Right: the dynamical cluster approximation [25]. For a detailed

description, see the text.

when some strength still remains in the high-energy peak.
The lowest peak has already broadened, leaving no trace
of the Brinkman-Rice effect (the scale of the lowest peak
has grown to about 1000 K, which is the whole range
shown in Fig. 5). The inset shows the hopping-fluctuation
regime fully developed, where the upper peak has com-
pletely disappeared, so there are again only two peaks
like in the LHB (left column). Both are low-energy phe-

nomena (Apq/t ~ 1.39 for the inset). For all of the right
column in Figure 6, the equilibrium thermopower stays of
the ‘wrong’ sign, like in the upper row of Figure 5, no mat-
ter how large ¢ is. The fact that the metal is both strange
and has an ordinary Fermi surface is consistent with the
fact that the unusual two-peaked feature in the heat ca-
pacity is observed on a scale smaller than the band-width.

3.4 Comparison with other work

To compare the present approach meaningfully with oth-
ers, some general remarks are in order. The approach de-
scribed here works at present only for the equilibrium
properties, a limitation not shared by some other avail-
able methods. It is in the thermodynamic limit, like other
theoretical schemes, and unlike purely numerical ones. It is
unique by being fully analytic. The spectrum (25) is given
in closed form, so the only numerical part of the work is
to fix the chemical potentials p and v by equations (17),
like in a non-interacting band problem.

One should also have some idea, what such a compar-
ison hopes to achieve. The present paper regards models
of Falicov-Kimball type as less interesting for their own
sake, than as stand-ins for problems one would really like
to treat, the dynamical Mott problem in particular. In
this context there is no a priori advantage to one model
over another, and it is preferable to concentrate on their
similarities. Differences are significant only if they can be
settled by a reliable external criterion, such as a known

exact result. Hence the purpose of this section is to iden-
tify some ‘generic’ behavior of this kind of models, see how
the present work fits in, and hopefully understand better
the relationship to the Mott type of problem. The papers
used for comparison here are selected as representative of
recent work, without implication as to merit or priority
relative to others.

El Shawish et al. [24] have studied a two-band spin-
less Falicov-Kimball model, which may be mapped onto a
Hubbard model in which the two kinds of spins, up and
down, hop with different overlaps, t; # ¢;. The method
was purely numerical, Lanczos algorithm on a lattice of
4 x 4 sites. The limit ¢t; = 0 corresponds to the origi-
nal model [14], and their result for this case is shown in
the bottom panel on the left in Figure 8. The full curve
for half-filling is directly comparable with the n = 1.0
curves in Figure 2. Obviously the general trends are the
same, a plateau at S = In2, dropping steeply to S = 0
at T' = 0, and rising very slowly at high temperatures,
due to incoherent hopping. However, in Figure 8 the en-
tropy curves show a gap in the spectrum, while in Fig-
ure 2 there is only a tendency for the effective mass to
diverge, or band-width to collapse, like in the Brinkmann-
Rice transition, broadened here to a crossover. Recall that
the first peak in the heat capacity is scaled by the band-
width W, which is very small when ¢t < A,q, meaning
the entropy plateau is pulled in to very low temperature
instead of being gapped. The gap is missing because only
the one-particle part in Fock space is kept; one expects
that the two-particle terms would indeed produce a gap
near half-filling, once the band-width in the one-particle
sector became small enough. (It is interesting that the
down-spin entropy in the present model goes to zero at
the Mott transition [18], indicating an ordered pattern,
even in the absence of two-particle terms.)

The other panels in the left of Figure 8 show the evo-
lution in ¢4 /¢, up to the full Hubbard model t; = ¢ in
the top panel. The evolution from small ¢/A,q to large
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Fig. 9. Heat capacities of the Hubbard model, from Lanczos [26] (left) and quantum Monte Carlo [27] (right) calculations,
discussed in the text. Note that positions of panels with the same concentrations are shifted.

t/Apq in the upper left panel of Figure 5 is remarkably
similar. This could have been expected, because the two
spin orientations correspond to the f and d bands in the
original two-band spinless Falicov-Kimball model. Hence
an equality between the f and d bandwidths is naturally
similar to a small (in units of t) splitting of the copper and
oxygen energies in the present work. The similarity never-
theless raises some issues in relation to the Mott problem,
which will be touched upon in the Discussion below.

Hettler et al. [25] have studied the two-dimensional
one-band Falicov-Kimball model by the dynamical cluster
approximation (DCA). This is an extension of dynami-
cal mean-field theory (DMFT [12]) to clusters of more
than one site, embedded in the same, spatially unresolved
host medium. In infinite dimensions, the simplest, one-
site DCA reduces by construction to the DMFT [12,25].
In finite dimensions, it reduces to the latter’s finite-
dimensional analogue, the dynamical mean-field approx-
imation (DMFA). The DCA results [25] for the entropy
are shown in the right panel of Figure 8, for a one-site
cluster (DMFA, full line), and four-site cluster (broken
line). The DMFA retains the full In2 per site entropy
in the ground state. The four-site DCA does better, but
still appears to saturate at about one-half that value near
T = 0. Hence the DCA agrees with the present work, and
with the numerical Lanczos results above, in the high-
temperature regime, but does not cross over correctly to
low temperature.

The heat capacities for the IGB in the right col-
umn of Figure 6 cross at two fairly well defined points.
Vollhardt [28] has noted this to be a quite general feature
of strongly correlated systems, for families of heat capacity
curves parametrized by pressure or concentration in exper-
iment, or the on-site repulsion U in the one-band Hubbard

model. The crossing of concentration-parametrized fami-
lies of curves in the IGB, and their failure to cross in the
LHB, fits well with previous observations based on Fig-
ure 5, that it is the IGB, rather than the LHB, which is
singularly affected by strong correlations.

A two-peak structure in cy is ubiquitously found in
numerical studies of Hubbard-like systems [24-27]. In Fig-
ure 9 on the left are the results of a Lanczos calcula-
tion [26] for the one-band Hubbard model on a 4 x 4
lattice. The right-hand panel is from a quantum Monte
Carlo (QMC) calculation on a 6 x 6 lattice for the same
model. They do not cross at any one point, and have two
peaks, both of which are generically features of the LHB
in the present model. This is not surprising, since concen-
trations below half-filling are the only ones relevant in the
one-band model, because of particle-hole symmetry.

It has been noted [26] that the two calculations in Fig-
ure 9 differ significantly in their outcomes. First, in the
QMC results the first peak loses strength much faster with
decreasing doping. Second, in the QMC results the peak
also moves, while in the Lanczos calculations it stays much
in the same place. From the RT model’s point of view, the
first peak is expected to scale with the non-interacting
bandwidth W), so its position should not depend on con-
centration, except insofar as due to the changing position
of the Fermi level. This is visible in the left column of
Figure 6. The first peak there barely moves, but it moves
a little more in the bottom left panel, where the non-
interacting band is wider, so the Fermi level shifts more
rapidly with concentration. Also, the narrower the LHB,
the sharper the first peak, and the more persistent as the
concentration decreases. This suggests a physical inter-
pretation of the differences in Figure 9. The QMC heat
capacities imply that the effective band seen by one-band
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Hubbard electrons below half-filling rapidly widens as the
concentration decreases. The Lanczos calculation implies
a situation similar to the present model in the LHB:
band-width independent of concentration, and the effec-
tive band somewhat narrower than the QMC prediction.

To summarize, below half-filling the present analytical
method gives similar qualitative behavior of thermody-
namic quantities as other, numerically much more in-
volved treatments of one-band models. It is also quantita-
tively correct in the known exact limits, of high and low
temperature, and high and low doping. Where it can be
checked quantitatively in the intermediate regime, namely
in Figure 3, it is correct as well. It misses the gap in the up-
spin spectrum around half-filling, replacing it with a BR
bandwidth collapse, presumably because it retains only
one-particle terms in the Fock-space free energy opera-
tor. The doping dependence above half-filling is qualita-
tively different than expected from the one-band analogy.
At fixed Hamiltonian parameters, there is a transfer of
spectral weight to a new scale, which emerges only with
doping. The new scale is connected with interband exci-
tations across the renormalized charge-transfer gap. The
present calculation also parallels Lanczos calculations on
the Hubbard model, both in the shape and behavior of
the peaks in the heat capacity below half-filling.

4 Discussion

The main modelling interest of the present article was to
determine when the one-particle construction, adopted to
calculate the free energy, indeed corresponds to a Fermi
liquid, and when it does not. For that purpose, a minimal
negative criterion to observe a non-Fermi liquid at a finite
temperature was adopted. A system is not a Fermi liquid if
the susceptibilities do not follow from the 1p-DOS at that
temperature. Put conversely, a necessary condition for a
system to be a Fermi liquid is that the 1p-DOS responds
‘rigidly’ to an infinitesimal change in temperature.

It has been found previously [22] that the Mott tran-
sition in the RT model is first order, from a liquid of light
particles, in the lower Hubbard band, to a gas of heavy
ones, in the renormalized in-gap band. (While the down-
spin entropy drops to zero at the transition, indicating AF
order, the chemical potential is a monotonous function of
the filling, i.e. there is no phase separation.) In the present
work, it is shown that while the liquid is a Fermi liquid,
the gas is not. The absence of residual interactions (which
makes it a gas) has been bought at the price of an anoma-
lous variation of the effective mass with the temperature,
such that the thermopower susceptibility (31) cannot be
predicted from the 1p-DOS at any given temperature. This
remains so even if the hopping overlap is large, because
the model is always in the strong-coupling limit: changing
the hopping does not affect the geometric obstructions,
as obvious from equation (1). The collectivity involved is
very simple. The fermions need to agree which are the best
positions for the annealed impurities, in precise analogy
to 3He atoms pushing against each other.
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At low hopping overlap, this geometric effect so dom-
inates the mean properties of the gas, that it is unable
to find new states of motion in a range of tempera-
tures, giving rise to plateaus in the entropy. (Extrapo-
lating experimental trends [15], one could imagine similar
plateaus appearing in *He around 0.5 K, if the pressure
were sufficiently increased.) These are remarkably similar
to Kauzmann plateaus in vitreous liquids, where they are
due to the configurational rearrangements falling out of
equilibrium. Clearly the Kauzmann phenomenon [16] is
a non-specific sign that kinetic exploration of configura-
tion space has been obstructed, whatever the responsible
mechanism. Here it has an interesting connection with the
Brinkmann-Rice (BR) bandwidth collapse [7], which is sig-
naled in Figure 2 by a steep rise of the entropy from zero
temperature at half-filling, indicating an infinite effective
mass. By the same token, the entropy plateau means that
the effective mass is zero, and it is obtained by continu-
ous deformation of the BR entropy curves with doping.
It may seem surprising that obstruction of kinetic motion
should be associated with zero thermodynamic effective
mass, but note that in the absence of new states, there
can be neither conduction nor dissipation. Zero effective
mass is just the equilibrium version of what is observed in
the Hall effect: the longitudinal Hall conductance and re-
sistance simultaneously drop to (almost) zero at the steps
in the transverse resistance, precisely because most of the
carriers are localized [1].

The place of the present calculation among various
cluster approaches is simple to state. It is the ordinary
Kubo cluster cumulant expansion of the annealed free en-
ergy, with the single proviso that it is calculated in Fock
space. The transition from operators to numbers is made
at the very end, after the single-particle Fock term has
been extracted. It is theoretically quite revealing that the
results presented here could be obtained by diagonalizing
a single CuOy4 ‘molecule’, i.e. the lowest non-trivial term in
the underlying cluster expansion. Clearly, the main work
was in fact done by the algebraic and combinatorial ma-
chinery which respectively enforced both the Pauli princi-
ple and the geometric constraint. Once these kinematical
issues were properly separated from the dynamical ones, it
turned out the problem was dominated by the former. This
outcome is physically plausible by adiabatic arguments:
the low-energy physics of the Falicov-Kimball model is not
controlled by any elaborate dynamical correlations, such
as one would expect in the Mott case, where the scatter-
ers and the scattered are equally light. It is also consistent
with the previous observation [22] that the system is a gas
beyond half-filling. In the lower Hubbard band, where it
is a liquid, higher-order clusters should affect the results,
but that is not expected to be qualitatively significant.

The comparison with other, numerically much heavier
calculations in the preceding section gives some grounds
for reflection on the Mott problem. This has been dom-
inated for the past forty years by Gutzwiller’s intu-
itions [6], that electrons of one spin see those of the other
as a ‘smeared background’ (Gutzwiller ansatz), and fur-
ther ‘as if occupying a band of width zero’ (Gutzwiller
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approximation). This point of view clearly implies there
should be some similarity between Falicov-Kimball and
Hubbard-model low-energy behavior. Such a similarity
appears to have been found in one of the calculations
cited above [24], in the smooth evolution of the entropy
as ty/t; was raised from zero to one. If one knew that
Gutzwiller’s proposals were correct, the very similar evo-
lution of the entropy, observed in the present calculation
as t/Apq was increased, would be naturally expected. As
things stand, one should keep in mind the alternative
resonating-valence-bond (RVB) scenario of Anderson [13],
in which quantum coherence between the two spin orienta-
tions is an essential ingredient of Mott’s insulating ground
state. Thus the possibility remains open, that the Falicov-
Kimball limit acts as a kind of trap for all approximate
treatments of the Hubbard model which incidentally de-
stroy this coherence, over time or space.

It is also of some interest that the heat capacities in
the RT model are qualitatively more similar to numerical
Hubbard model results, than to one-band Falicov-Kimball
results. It is possible that the oxygen degree of freedom
plays a role analogous to the ‘other’ spin in the one-band
Hubbard model.

To conclude, geometric obstruction in thermodynamic
equilibrium has been explored in an analytic single-
particle quantum model of Falicov-Kimball type. In the
regime t < Apq, it gives rise to a plateau in the entropy
of mobile spins. For ¢t ~ A,q, the mobile spins appear to
be normally metallic, only with renormalized parameters.
Beyond half-filling, their equilibrium thermopower suscep-
tibility nevertheless reflects the microscopic kinematic re-
strictions, behaving oppositely to what is expected from
the single-particle properties. For these fillings, correla-
tion effects in the model do not simplify in the limit of
low temperature and large hopping overlap.
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